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Spin-wave expansion for the O(2) Heisenberg spin model in 
(d  + 1) dimensions 

C J Hamert and Zheng Weihongt 
School of Physics. University of New South Wales, P O  Box 1, Kensington, NSW 2033, 
Australia 

Received 18 lune  1992 

AbrtracL Spin-wave expansions are " b e d  out for the %miltonian vemion of the 
O(2) Heisenberg Spin model, and evaluated for the cases of the (1rl)-dimensional 
linear chain, and the @+l)-dimensional q u a r e  and viangular lattices. Expresrions are 
obtained for the bulk limits and finiteaize mrrections to the gmund-state energy, the 
one-boson excitation energy, the magnetization and susceptibility at low 'temperatures'. 
Results are derived for the critical parameten in the (l+l)-dimensional model, and the 
Goldstone mode parameten in the @+l)-dimensional models. Comparison is made with 
the finiteaize scaling predictions of Fisher and Privman. 

1. Introduction 

The O(2) Heisenberg spin model provides a rich assortment of interesting physical 
phenomena. In WO dimensions, Kosterlitz and Thouless (1973) used it as the first 
example of a new sort of phase transition, involving the unbinding of topological 
vortex-antivortex pairs. There is no long-range order at low temperatures, in 
accordance with the Mermin-Wagner theorem (Mermin and Mgner  1966), but 
the model displays a continuous line of critical behaviour there, characterized by 
a varying correlation length index 7. The finite-size scaling behaviour of the model 
can tell us a great deal about the critical behaviour in this region, when the theory 
of conformal invariance is employed (Cardy 1987). A finite-size scaling approach was 
used by Luck (1982) to obtain a spin-wave expansion for the critical index 1) at low 
temperatures. 

In three dimensions; the mode! is expected to undergo a standard second-order 
phase transition, and at low temperature the usual first-order magnetic transition 
line occurs. There the O(2) symmetry is spontaneously broken, resulting in the 
appearance of a massless Goldstone boson in the theory. This produces some new 
and interesting finite-size scaling phenomena, which were discussed briefly by Cardy 
and Nightingale (1983). and more extensively by Fisher and Privman (1985). assuming 
that the renormalization group behaviour is dominated by a discontinuity k e d  point 
at zero temperature. Recently, the effect of the Goldstone modes on the finite- 
size scaling behaviour has been discussed more systematically by Hasenfratz and 
Leutwyler (1990), using chiral perturbation theory. 
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In this paper we set out to study the low-temperature behaviour of the 
Hamiltonian version of the O(2) Heisenberg model, by means of a spin-wave 
expansion. The Hamiltonian version was formulated by Hamer el a1 (1979), and 
has since been studied by means of series expansions (Hamer and Richardson 1981, 
Hornby and Barber 1985), finite lattice calculations (Roomany and Wyld 1980, 
Hamer and Barber 1981, Allton and Hamer 1988), Monte Carlo methods (Heys 
and Stump 1984, Stump 1986), and some analytic works (Migdal 1975, Stump 1980, 
Mattis 1984). Here we study both the bulk behaviour and the finite-size scaling 
corrections for the ground-state energy, the one-boson excitation energy, the 
magnetization and the susceptibility, using the spin-wave expansion. 

The results are in excellent agreement with theoretical expectations, in particular 
with the finite-size scaling predictions of Fisher and Privman (1985). The Hamiltonian 
model, in which one (time) dimension is infinite, corresponds to the ‘cylindrical’ 
geometry of Fisher and Privman. Whereas the finite-size scaling corrections at low 
temperature vary exponentially with lattice size M in a model with discrete symmetry, 
it turns out that they wry as integer powers of M in a model with continuous 
symmetry such as the present one. The Goldstone modes, which control the finite- 
size scaling behaviour, are characterized by three parameters: the helicity modulus, 
the spontaneous magnetization, and the ‘speed of light’. Btimates are given for those 
quantities. 

In section 2 of the paper the spin-wave expansion formalism is presented. The 
results for the bulk properties of the system are given in section 3 and 4. In section 5 
the finite-size corrections are discussed, beginning with the ‘zero mode’ sector, which 
corresponds to the ‘degeneracy kernel’ treated by Fisher and Privman (1985). Our 
conclusions are summarized in section 6. 

2. Spin-wave expansion 

The quantum Hamiltonian for the O(2) Heisenberg spin model is (Hamer er a1 1979) 

where ( i j )  denotes nearest-neighbour pairs, and n( i )  is a two-component spin veaor 
at site i, normalized to unity, so that 

n ( i )  E ( n , ( i ) , n z ( i ) )  = (cosO(i),sinO(i)) (2) 

while J ( i )  is the angular momentum operator conjugate to O(i), which can take any 
integer eigenvalue. The commutation relations are 

[J(i),@(j)] = -isi,;. (3) 

The parameter I is the ‘thermal’ variablet, while h is the magnetic field. Let us set 
h = 0 for the time being, and rewrite the Hamiltonian in the equivalent form 

i 

t In  the classical limit, kT is proponional 10 z-t/z (Hamer et ol 1979). 
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The spin-wave expansion is a low temperature expansion, corresponding to large 
2 value. At large x, the second term in equation (4) dominates, and for low-energy 
states the differences [ 8 ( i )  - 8 ( j ) ]  will all be small, so that one is led to make a 
power series expansion of the cosine. Thus 

+ 9. (l@(i) - 8(j)I2- $l@(i) - 8(j)14+ &jlQ(i) - 8(j)I6) + O ( @ )  
iij) 

(5) 

where N is the total number of lattice sites, and z the ‘co-ordination number’ (number 
of nearest neighbours for each site). Next, we perform a Fourier series expansion 

(6) 
1 1 

8, = - x O ( m ) e x p ( - i k . m )  J - - x J ( m ) e x p ( i k . m ) .  om k - f i m  

Note that then 

and the commutation relations in momentum space are 

Then the Hamiltonian becomes 

where 

is the ‘structure factor’, with p denoting the unit vectors connecting nearest 
neighbours on the lattice, R is defined by 

R(k1,kz3k3?k4) = ~ - ~ Y ~ + ? I + Z + Y L + ~ + Y I + ~  (11) 

and in the summations we adopt the convention of writing 1 instead of k,, etc. 
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The quadratic terms in H can now be diagonalized by a Bogoliubov 
transformation 

ak = (l/JZ)(tanb,J, - icot+,O:) (12) 

where 4k = 4-k, and 

Then one finds that a;, ak obey the commutation relations of Bose creation and 
destruction operators 

Iak ,a1 ,1  = 6 k , k s  (14) 

and after normal ordering the Hamiltonian becomes 

where the lattice Sums C, are defined as 

nk = a la ,  is the boson number operator, and the two-particle vertex factor 
V , ' (  k , ,  k z )  and four-particle vertex factor Vy)(  k , ,  k , ,  k,, k4) are 

It can be seen that the spin-wave expansion is effectively an expansion in powers 
of ( X Z ) - ' / ~ .  It is expected to be an asymptotic expansion, and does not reproduce 
(for instance) the non-perturbative topological effects which are responsible for the 
Kosterlitz-Thouless transition in (1+1)  dimensions. 
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3. Rulk properties-thermal 

3.1. Ground-state energy 

Using Rayleigh-SchrGdinger perturbation theory, with the perturbation terms being 
those containing the vertex factors y ,  one can find the ground-state energy per site 
from the Hamiltonian (15) 

to third order in the spin-wave expansion, where 

and 

are the contributions from the two perturbation diagrams shows in figure 1. Here D ,  
is defined by 

Figure 1. Ihe perturbation diagrams that 
contribute to the ground state energy EofN. 'he 
crosses represent the interaction vertices; the lines 
represent boson excitations in the intermediate 
states. 

Using the values given for various lattice sums in the appendix, one finds the 
+-nIIn. .r inn I P C . . I I .  fnr .n,=r;fir ,nt , ; rer .  ,""Y.."'b ,C*" IY  .". "p"...., .'.L.._-l. 

1. One-dimensional linear chain 

E, /N  = -x + 2&/n - 1/n2 - 0 . 0 1 0 8 0 ~ - ~ / ~  + O(Z-'). 

E o / N  = -21 + 1 . 3 5 4 9 5 6 -  0.114742 - 0 . 0 0 8 2 5 5 ~ - ' / ~  + O(Z-') .  

E,/N = -31 f 1 . 6 7 6 1 8 6 -  0.117066 - 0.00669~- ' /~  + O(2-l) .  

(22) 

2. Tho-dimensional square lattice 

(23) 

3. no-dimensional triangular lattice 

(24) 
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3.2. Dispersion relation 
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The energy E(k) of a single-boson state with momentum k can he derived from the 
Hamiltonian (15) as 

E(k)= f i [ & - ~ - - ( - ) l ’ z ( ~ + ~ ) + O ( z - l ) ]  c, 1 2 (25) 8 2 2  3 

Besides diagonal terms, the five perturbation diagrams shown in figure 2 contribute 
to this result. 

Figure 2. ?he perturbation diagmm !ha! mnrribute 10 lhe energy E(k) of a ingle-boson 
Slate. 

Now at small k (for ( d  + 1) dimensions) 

while 
D3( 12) - constant as k - 0 

and so one finds a linear dispersion relation at low momentum 

E(k) - u ( x ) J k I  as k + 0 (29) 

corresponding to a massless boson field. The factor U( x) is the spin-wave velocity 01 
‘speed of light’ in  the model, which k then 

In (1+1) dimcnsions, the presence of this massless field is an indicator of the 
criticality of the model at low temperatures. In (2+1) dimensions, it corresponds to 
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the Goldstone mode produced by spontaneous breakdown of the continuous O(2) 
symmetry. 

1. One-dimensional linear chain 

For specific lattices, one finds the following results: 

(31) 
1 U(=) = 6- - - -0.06126111z-L/2 + O(z-'). 

I ,  

2. Tho-dimensional square lattice 

U( 2) = 6 - 0.239523 - 0.0278391~-'/~ + O( z- ' )  . 

U( z) = & - 0.241936 - 0.0214988.~-'/~ + O( z-') . 

(32) 

3. Tho-dimensional triangular lattice 

(33) 

4. Bulk properties-magnetic 

The magnetic operator in the Hamiltonian (1) is 

v = Cn,(i) = C c o s e ( i ) ,  
i i 

(34) 

If we expand the cosine in a power seriest, and then follow the same procedure as 
in section 2 with the magnetic field h non-zero, then everything follo& as before, 
where now 

The finai, normai-ordered Hamiitonian is 

1 xz  + -E [-(I 2 --,,.) + 
N ,  

t 'lhs procedure will be reconsidered more cardully in Section 5. 



The ground-state energy per site is then 

.. . 
(39) 

4.1. Sponlaneous niapelizalion 

The spontaneous magnetization, defined by 

= aEul h=U 
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is computed to be 

where 

1. One-dimensional linear chain. In this case the lattice mnstant C-, diverges, and 
so the spin-wave expansion does not converge. This may be an indication, however, 
of the expected behaviour: at zero temperature (x -+ m) C = 1, but at any finite 
temperature the spontaneous magnetization is strictly zero, according to the Mermin- 
Wagner (1966) theorem. 
2. Tho-dimensional square lattice 

C = 1 - 0.227293~-~/~  - 0.012665~-' - 0.001675~-~/~  + O( x - ~ ) .  

C = 1 - 0.178708~-'/~ - 0.0089%~-' - 0 .001107~-~ /~  + O(X-') . 

(43) 

3. 'Iivo-dimensional triangular lattice 

(44) 

4.2. Suscepfibilily 

The magnetic susceptibility is 

1 azE" x=--- N ah2 (45) 

This quantity diverges at h = 0 in both (1+1) and (2+1) dimensions. RI study how 
it diverges, we first look at the WO order term of x at small but finite h 

where 

Replacing the sum by an integral in the bulk limit, and using the asymptotic expansion 
near h = 0 by Hamer ef a/ (1991) and Zheng el a/ (1991), we can get x at leading 
order of / I :  

1. One-dimensional linear chain 

1 + I n ( h / Z )  + 0(x-3/2), 
4 h & G +  32ha2x 

S "  
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Again, we see that the spin-wave expansion does not converge for the magnetic 
derivatives as h - 0. 
2. 'bo-dimensional lattices 

C J Hamer and Zheng Weihong 

+ o(x-') (square lattice) 
h-'l2 0.0001947h-1/2 

77x312 

+ o(z-') (triangular lattice). 

X" 

This behaviour matches that of the three-dimensional Euclidean model derived 
by Vaks er a/ (1967). Equation (49) agrees with the prediction of Fisher and 
Privman (1985) that x should diverge as lhl(d-4)/2 as h - 0. 

5. Finite-lattice corrections 

The finite-size scaling corrections can give us a great deal of information about the 
model (Barber 1983), especially when the theory of conformal invariance is applied 
at criticality in (1+1) dimensions (Cardy 1987). The spin-wave 'zero mode', which 
we have negiected hitherto, piays a cruciai roie in the finite-iattice corrections, so we 
begin with a more careful consideration of its effects. 

5.1. The zero mode 

Consider first the case with magnetic field h = 0. If we separate out the k = 0 terms 
from the Hamiltonian (9), we find 

H,., = J; J~ (50) 

which is already diagonal. The thermal operator involves only differences [O(i) - 
6'(j)], and therefore has no dependence on the overall 'average' orientation 0, of the 
system, at  any order. The eigenvalues of Jo are easily seen to be 

( 1  = integer) (51) 
1 J,' = Ju = - 
fi 

and thus the zero-mode energy eigenvalues are 

(52) 
12 

E,., = - N 
( 1  = integer) 

exact to all ordcrs in the spin-wave expansion, with corresponding eigenvectors 

Next, consider the magnetic operator 

v = CcosO(n1) .  
m 

(54) 
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As h - 0, this magnetic term represents a small perturbation, and it is not strictly 
correct to assume all the angles O( m) are small, and to expand the cosines in a power 
series. The zero mode must be separated out first. Define 

then 

zms(-)[l-Z(H-(m))Z] 00 1 -0-(m)sin (&) (56) 

fl 
since O-(m) can he expressed purely in terms of the differences [O(i) - O(j)]. 
Summing over sites m, one finds after a little algebra 

0 1 v = c a s  O(m) = cos (2) [ N - 5 0 4  + O(0’). (57) 
m fl k#U 

With these preliminaries, we are equipped to discuss the leading finite-size 
corrections. 

5.2. Ground-slate energy 

The zero mode plays no special role here, and the finite-size corrections arise simply 
from the difference hetween the finite-lattice values of the lattice constants C, and 
D, and their hulk values, as listed in the appendix. Thus one finds the following 
results: 

1. One-dimensional linear chain 

E u / N  - e , - ( x / 6 M 2 ) ( ~ - 1 / x - 0 . 0 6 1 2 6 1 1 1 z - ” 2 + O ( z - ’ ) )  as M - C O  

(58) 

where M = N is the lattice size, and e, is the bulk value. Now according to the 
theory of conformal invariance (Blote el al 1986, M e c k  1986), the leading finite-size 
correction at a critical point is 

EUIN - e ,  - x v ( z ) c / 6 M 2  as M -, 00 (59) 

where U(.) is a scale factor equal to the spin-wave velocity, and c is the conformal 
anomaly, which characterizes the universality class of the critical point, and the 
allowed set of critical exponents. Comparing equation (58) with (59), and recalling 
equation (31) for the spin-wave velocity U(.), we see that the conformal anomaly is 

c =  1 (60) 

prcciscly, through third-order in the spin-wave expansion. This is expected to he  an 
exact result for this model; it allows the possibility of continuously varying critical 
exponents. 
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2. no-dimensional square lattices 

C J Hamer and Zheng Weihong 

E,/N ,., e, - ( l / M ’ ) ( l . O 2 ~ ’ / ~  - 0.172 + O(X-’’’)) 

E,/N -e,-(1/M3)(1.351x”’-0.189+0(x-’~*)) as M - t o o .  (62) 

as M i CO. (61) 

3. ’bo-dimensional triangular lattices 

The l /M3 dependence of the finite lattice corrections in (2+1) dimensions was 
predicted by Fisher and Privman (1985), and is the same as that expected at a second- 
order critical point. The amplitude of the corrections has no special significance, so 
far as we are aware. 

53.  Mass gap 
The mass gap in the model is just the gap between the lowest energy states in the 
zero mode sector, which from equation (52) is simply 

FN = 1/N (63) 

exact to all orders in the spin-wave expansion. The only corrections will be 
non-perturbative ‘tunnelling’ effects, ‘of order exp( -constant x &) (Hamer and 
Barber 1981) 
1. One-dimensional linear chain 

FN = 1 / M .  (64) 

A 1 /M dependence for the mass gap is the primary signal of a critical point in finite- 
size scaling theory (Barber 1983). According the the theory of conformal invariance 
(Cardy 1984), the finite-size scaling amplitude is related to the correlation length 
exponent ~ ( x )  by 

F,,, - m ~ ( z ) q ( z ) / M  as M - M (65) 

where again the scale factor U(.) equals the spin-wave velocity for the Hamiltonian 
model. Comparing equations (64) and (65), we see that in this model 

2. no-dimensional square lattices 

FN = l / M Z .  (68) 

The 1/M2 dependence is just that predicted by Fisher and Privman (1985). They 
show that the longitudinal correlation length E l  in the cylindrical geometry is given 
in terms of a quantity called the ‘helicity modu I us’ Y by 

2YA as M-cm Ell - 
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where A is the transverse cross-sectional area. If we invert the correlation length to 
get a mass gap, multiply by the ubiquitous scaling factor ~ ( x ) ,  replace kT by fi 
(Hamer et a( 1979), and set A = MZ (lattice spacing a = l), then the equivalent 
expression for the Hamiltonian model is 

Comparing (70) with (69), we see that the helicity modulus is 

in the spin-wave expansion, i.e. 

Y(z) = 1 - 0.169368~-' /~ - 0.01%8522-' + O ( Z - ~ / ~ ) .  (72) 

3. no-dimensional triangular lattices, here again 

FN = 1 / M 2 .  (73) 

The argument is the same as for the square lattice, except in this case kT should be 
replaced by l/&, and A = A M 2 / %  and hence 

5.4. Magnelizalion 

The spontaneous magnetization is 

E, = 

Now the zero mode sector is disjoint from the rest of the Hamiltonian, and therefore 
the matrix element in (76) is proportional to the zero-mode matrix element 

where Lf are raising and lowering operators for the 'helicity' 1 in the zero-mode 
sector. Therefore 

E,=O (78) 

i.e. the spontaneous magnetization is zero on any finite lattice, in agreement with 
general theorems. Spontaneous symmetry breaking can only develop in the bulk limit. 
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5.5. Suscepribilily 

The susceptibility is 

C J Hamer and Zheng Weihong 

where E: denotes the energy eigenvalues when h = 0. The magnetic operator can 
be expanded in terms of boson operators as follows 

+ (higher-order terms) 

Therefore 

in leading order, where the first term involves an excitation in the xro-mode sector 
only, while rhe second term involves a pair of excited bosons with momenta k and 
-k as well. Hence one finds 

c-3 + (higher-order terms) . (82) 

1. One-dimensional linear chain. In this case, both C-, and C-, diverge as M 9 M 

(see appendix). The fiat term in (82) gives 

to leading order, as predicted by finite-size scaling theory. Note, however, that these 
approximations are only d i d  for fi >> In M .  
2. Two-dimensionai square iattice. Here oniy C-, diverges as M -+ m, ana one 
finds 

??.,e P"f4 dependecce of :he !ea&sg is nrerlirtpd bi c,:dy pEd I,--"--" 
Nightingale (1983) and Fisher and Privman (1985). Fisher and Privman predicted 
that the coefficient should be proportional to the square of the bulk spontaneous 
magnetization E, and indeed we see that 

x N  2 M4C2 (85) 



Heisenberg spin model in (d +I) dimensions 6225 

to this order. This term develops into a delta function singularity in the bulk 
limit, corresponding to a finite discontinuity in the magnetization-that is, to the 
spontaneous magnetization. 

The second term in (84) is referred to as the 'spin-wave contribution' by Fisher 
and Privman (1985). It i$ this term which gives rise to the h-'j2 divergence in the 
bulk susceptibility as h -+ 0. Note that the proportionality to M is mnsistent with 
finite-size scaling in the vicinity of the discontinuity fixed point: the mass gap is 
expected to vanish like h as h + 0 in the bulk, whereas it vanishes like as 
M -+ cc at h -, 0, correspondingly, the spin-wave contribution to the susceptibility 
diverges like h-'/' as h -+ 0 in the bulk, while it diverges like A4 on the finite lattice. 
3. Tko-dimensional triangular lattice. 

0.1787 * 0.00143M 
x N = ~ 4 ( 1 - 7 )  + x3,2 . 

Similar comments apply. 

6 SEK!!?wy nr?!! w!?d!!sinns 

We have derived spin-wave expansions for the ground-state energy, one-boson 
excitation energy, magnetization and susceptibility of the O(2) Heisenberg spin model 
in ( d  + 1) dimensions. Both the bulk behaviour and the finite-size correlations have 
been calculated, for the cases of the (l+l)dimensional linear chain, and the (2+1)- 
dimensional square and triangular lattices. The spin-wave expansion is expected to be 
an asymptotic expansion, valid at low temperatures or large couplings I. The results 
agree entirely with earlier theoretical predictions. 

For a (1+l)-dimensional linear chain of M sites, the mass gap equals 1 / M  
exactly in the spin-wave expansion (Hamer and Barber 1981). indicating the line of 
critical behaviour at low temperatures predicted by Kosterlitz and Thouless (1973) 
and Kosterlitz (1974). The conformal anomaly was found to be 

c = l  (87) 

precisely, through third order in the spin-wave expansion; this is expected to be an 
exact result. The correlation length index was found to be 

to be compared with Luck's (1982) result for the Euclidean version of the model 

T 
.(x) = 

2rrp  - r(r)l 
where 

f ( T )  = 4T + &T2 + 0.034127T3 + O(?) 

There appears to be no ve1y simple relationship between the Hamiltonian and 
Euclidean results. 
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The spin-wave velocity or 'speed of light' for the onedimensional chain is related 
to V(X) by 

v(x)  = l / * q ( x ) .  (91) 

For the (2+1)-dimensional models at low temperatures, which are expected to 
exhibit a first-order magnetic transition, the finite-size scaling behaviour is just that 
predicted by Cardy and Nightingale (1983) and Fisher and Privman (1985). The mass 
gap is exactly l /Mz, neglecting non-perturbative effects, and the leading term in the 
susceptibility at zero magnetic field scales like M4, for a lattice with M sites on a 
side. These effects are controlled by the 'zero mode' in the model, which plays a role 
equivalent to the 'degeneracy kernel' discussed by Fisher and Privman (1985). 

In the hulk system, the O(2) symmetry is spontaneously broken, and the spin-wave 
excitations play the role of a massless Goldstone boson field. According to Fisher 
and Privman (1985) or Hasenfratz and Leutwyler (1990), the Goldstone modes and 
the finite-size scaling behaviour at leading order are governed by two parameters, the 
helicity modulus Y and the spontaneous magnetization E, to which one must add 
the scale factor or spin-wave velocity U ,  in the Hamiltonian version of the model. In 
the spin-wave expansion, we find 

d% - 0.239523 - 0.0278391~-'/~ + O( X-') 

-& - 0.241936 - 0.0214988~-'/~ + O(x-') 

(square lattice) 

(triangular lattice) 
(92) 

I V ( X )  = 

1 - 0.227293~-'/~ - 0.012665~-' - 0 . 0 0 1 6 7 5 ~ - ~ / ~  + O ( Z - ~ )  

1 - 0 . 1 7 8 7 0 8 ~ - ' ~ ~  - 0.008994~-' - 0 . 0 0 1 1 0 7 ~ - ~ / ~  + O(X-') 
(square lattice) 

(triangular lattice) 

.={ 
and 

Y(5)  = V ( X ) / f i .  (93) 

with the particular normalization we have adopted for our Hamiltonian. 
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Appendix. Calculation of C ,  and D ,  

Here we show how to calculate the bulk limits of lattice constants C, and D ,  
(n = 1,2,3), together with their finite-lattice corrections. 

The evaluation of C, involves a summation over momentum k in the first 
Brillouin zone. For the bulk system, the momentum k is continuous over the first 
Brillouin zone, but for the finite-lattice system, the momentum k is discrete. For the 
following lattices, the structure factor -yk, the first Brillouin zone for a bulk system 
and the discrete momentum k for a finite-lattice system are: 
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1. One-dimensional linear chain 

Yk = cos(k,a)  

0 < k ,a  < 2n 

2ni 
k=(i) = - M a  

(momentum k ;  bulk system) 

i = 1,. . . , M (finite lattice system). 

2. %a-dimensional square lattice 

yk = - [ m s ( k , a )  + cos (k ,a ) ]  

0 < k,a, kya  < 2 n  

k , ( i )  = 2 r r i / M a  

1 
2 

(momentum k; bulk system) (AZ) 

i = 1, .  . . , M (finite lattice system). k , ( i )  = Z7ri/Ma 

3. Xvo-dimensional triangular lattice 

-tk = i[cos(k,a) + 2 c o ~ ( k , a / Z ) m s ( J 5 k , a / 2 ) ]  

0 < k,a < 27r 0 < J 5 k y a / 2  < 277 (momentum k; hulk system) (A3) 

For the one-dimensional linear chain, C, for the bulk system can easily be 
calculated exactly, and the finite-lattice correction to GI can also be carried out exactly 
by using the Euler-Maclaurin formula (Atkinson 1978). For the (2+ 1)-dimensional 
bulk system, the asymptotic expansions for C,(m) have been carried out by Hamer 
el a1 (1991) and Zheng ef a1 (1991), and the finite lattice corrections can be evaluated 
by calculating [ C , ( M )  - C,,(m)]Mntz for a large lattice system, or hy a least- 
square fit of C , ( M )  to the form Cn(m) + AIM"+= + B/M"+3 + CIM"+'.  The 
constants D3(0)  and D ,  in the case of (1+1) dimensions can also be calculated by 
a similar method. For (2+1) dimensions, instead of calculating D, and D, directly, 
jve i?rro.(sce e pzraFAe:er 1 Lqto q and n~ 

-2 

and expand D l ( t )  and D2(1)  into a series in 1 using Mathematica, where the 
expansion coellicienrs can be integrated analytically. The results of the series 
myaL,Jl"rl d_lC.. 
o-..""".-" "-". 
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Square lattice: 

D l ( t )  = 11/16 - 351164 + 2299t2/4096 - 0.4818115234375t3 

C J Homer and Zheng Weihong 

+ 0.454561471939086914t4 - 0.403501808643341064ts 

+ 0.37676857062b154542t6 - 0.341403306287247688t' 

+ $.?:9~$3,33Gsc%G42433tg - 0.293sE5@2.$7az7ty 

+ 0.275949M)7092254467t1u - 0.256297599!3652650~t~~ 

+ 0.214972274242537484t14 - 0.202581371835823069t'S 

+ 0.192912754853624253t16 - 0.182750979003280880i1' 

+ 0.174629123714461590t'8 + o(t") 

+ 0.242045606162199269t1' - 0.226631423902937783t13 

('4-5) 
D 2 ( t )  = 49/32 - 187t/128 + 15u)1t2/8192 - 1.8829345703125t3 

+ 2.08595311641693115t4 - 2.10704937577247620tS 
+ 2,23053%78:78;8373$ - 2,2.$59~6~~23@g33:t7 

+ 2.32942795897724864i8 - 2.34061539061690382ty 

f 2.39871912041739854t'O - 2.405587295242585631'' 

+ 2.44800332614562678t1' - 2.45157260139349534t') 

+ 2.48328626839828260t'4 - 2.48438209682094625t1' + 0 ( t l 6 )  . 
Piangular lattice: 

Ul(t)  = 13/24 - 5t/18 + 271t2/1536 - 0.07375458140432098771' 

+ 0.043620199823575746t4 - 0.015422318697956854tS 

+ 0.0107438295984246t6 - 0.0025021345481660t' 

+ 0.003021432173733197L" + O.00000827921235540tY 

+ 0.00110337270030009t1" -t O.Ow368563937665631" 

+ 0.00054597219184827i" + 0.00033664582474522i'3 

+ 0.00033728552632752t'4 + 0.00026010951876264t'' 

+ 0.M)(n3512586M)8291t16 + O(tI7) 

D 2 ( t )  = 21/16 - 19t/24 + 643t2/1024 - 0.2955638744212%2%t3 

+ 0.2117447558744454t4 - 0.078547403155040t' 

+ 0.067948332437108t6 - 0.0139158838004841t' 

+ 0.024470540206218t8 + 0.002042745430904ty 

+ 0.01128899453t'" + 0.0049446453t" 

+ 0.0068097607t1Z + 0.00479251778925t13 

+ 0.00491528288384t14 + 0.004111568123838t1s + O(t16) . 
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Extrapolating the above series using integrated Dlog Pad6 approximanu 
(Guttmann 1989) in 6 = 1 - (1 - t ) I / *  (Hamer ef a1 1991 and Zheng et al 1!391), one 
can obtain an estimate at the limit 1 = 1. 

1. One-dimensional linear chain 

The final results for C,, and D ,  are summarized as: 

2fi f i r  D, = 0.61494625 - 2.55737/M2 
c l =  T-- 6MZ 

(A71 
, I  

D3(0) = 0.8634168148. JZ C-, = -1nM 
r 

2. Bvo-dimensional square lattice 

C, = 0.958091399 - 0.719/M3 

C-, = 1.285764497 - 1.2415/M 

C-, = 0.291348M + 0.1638 

D, = 0.4826( 1) 

Dz = 1.425(3) 

D,(O) = 0.512870. 

3. Bvo-dimensional triangular lattice 

C, = 0.96774233 - 0.7802/M3 

U-, - I.LJ"IL.."J - L . L J l - r i , , " L  

C-, = 0.237176M + 0.2384 

D, = 0.4116(2) 
n - 1 ??"I?\ U 2  - '.LL.-yL, 

D,(O) = 0.38258%. 

(A9) fl - 1 , ? P l l " n l  1 1 C 1 " "  l l d  
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